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Complete Modal Decomposition for Optical Waveguides
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Virtually all electromagnetic waveguiding structures support a multiplicity of modes. Nevertheless, to
date, an experimental method for unique decomposition of the fields in terms of the component
eigenmodes has not been realized. The fundamental problem is that all current attempts of modal
decomposition do not yield phase information. Here we introduce a noninterferometric approach to
achieve modal decomposition of the fields at the output of a general waveguiding structure. The technique
utilizes a mapping of the two-dimensional field distribution onto the one-dimensional space of waveguide
eigenmodes, together with a phase-retrieval algorithm to extract the amplitudes and phases of all the
guided vectorial modes. Experimental validation is provided by using this approach to examine the
interactions of 16 modes in a hollow-core photonic-band gap fiber.
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FIG. 1 (color). Two distinct amplitude decompositions, in the
waveguide eigenmode basis, for a far-field intensity measured at
the waveguide output. Both yield a reconstruction that fits the
measured intensity.
Eigenmode decomposition of the field at the output of
waveguides can provide fundamental insights into the
nature of electromagnetic-wave propagation. The compari-
son of the modes present at the input to those exiting the
structure enables the elucidation of loss mechanisms on the
one hand and quantitative analysis of modal coupling on
the other. The prospect of performing modal decomposi-
tion is of importance to several recent experimental efforts
in atom guiding [1], high-harmonic generation in atomic
gases [2], supercontinuum generation [3], and core vs
surface mode guidance in photonic-band gap (PBG) fibers
[4]. Nevertheless, a practical route to comprehensive mo-
dal decomposition, one that yields the full complex expan-
sion coefficients of the vectorial field in the eigenmode
basis, has not yet been achieved. In this Letter we introduce
a novel, rapidly converging, method based on the phase-
retrieval algorithm together with intensity measurements at
two planes, that yields a unique modal decomposition. An
experimental validation is performed by decomposing the
guided field in a photonic-band gap fiber. Both the ampli-
tudes and phases of the 16 lowest-energy vectorial modes
are obtained. The efficient convergence enables, for the
first time, the quantitative analysis of bend-induced inter-
actions in a many-mode system.

Indeed, research on the transmission properties of wave-
guides supporting a multiplicity of modes spans many
decades, from millimeter waves in the seminal work of
Southworth in the 1930s [5] through ultraviolet transmis-
sion [6] in recent experiments. Modal decomposition ap-
proaches based on single-intensity measurements in the
Fourier plane have been known (Refs. [7,8], for example).
However, without any other a priori known constraint of
the field distribution, the solution of such an inverse prob-
lem is not unique [9–12]. An example for such ambiguity
is demonstrated in Fig. 1 where we plot the measured
intensity at the output of an optical fiber. Two possible
amplitude decompositions (amongst many other) are pro-
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vided, both of which yield a reconstruction that fits the
measured intensity distribution.

Our approach is based on indirectly accessing the phase
of the optical wave front at the output of the waveguide
from intensity measurements alone. The Gerchberg-Saxton
(GS) algorithm [10] is a particularly successful method for
phase retrieval that results in a unique as well as noise
tolerant solution [11] by iterating back and forth between
the two-dimensional (2D) field distributions of the object
and the Fourier planes (and thus can be quite computation-
ally intensive). The decomposition of a field in a wave-
guide, on the other hand, is inherently a one-dimensional
(1D) problem since the field is constrained to be a linear
superposition of the waveguide eigenmodes that can be
determined from the waveguide structure. The only un-
knowns are thus the expansion coefficients in this super-
position, which form a 1D complex space. By mapping the
problem from the 2D image space into this abstract 1D
space of waveguide eigenmodes we reduce significantly
the number of independent variables, and also completely
remove the dependency on the number of pixels in the
iterative process. Furthermore, since higher-order modes in
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FIG. 2 (color). (a) Scanning electron microscope image of the
PBG fiber cross section. Calculated intensities and vector field
distributions for the (b) TE01, (c) HE11, and (d) HE21. All plotted
with the degeneracy phases �n set to 0.
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multimode waveguides tend to have higher losses, one can
set a modal cutoff, depending on the specifics of the
waveguide, and deal with only a finite number of modes.
It is noteworthy that this approach applies to any wave-
guide, whether or not it possesses any symmetry.

In Ref. [12], Fienup established that iterative methods,
such as the GS algorithm, are related to gradient search
methods. Following suit, we construct our algorithm to
minimize an error function with respect to a set of inde-
pendent variables representing the expansion coefficients
of a basis set constructed of the waveguide eigenmodes.
Since the vectorial aspect of the waveguide modes is
essential we define four squared-error functions for two
orthogonally polarized components in both the near and far
fields

�a;b �
Z
core

fIa;br �r� � Ia;bme �r�g2dA; (1)

where a � 1, 2 defines the plane of measurement (near or
far field), b � 1, 2 defines one of two perpendicular polar-
izations, Ime is the measured intensity, while Ir is the
intensity of a reconstructed estimate of this field. We
then define an overall error function � � 	a;b�a;b. We
used an unconstrained optimization routine [13] to perform
the minimization of this error function over the space of
expansion coefficients.

If the electric and magnetic field vectors of the nth
waveguide mode are ~’�E�

n and ~’�H�
n , respectively, and their

scalar projections in a fixed direction are en and hn, then
the total field vectors are ~E�r� � 	ncn ~’

�E�
n �r�, ~H�r� �

	ncn ~’
�H�
n �r�, where cn � jcnjei n are the expansion coef-

ficients. Using this notation, the reconstructed intensity is
Ir�r� � 1

N Re	i;jcic
�
jei�r�hj�r�, where N is a normalization

factor, and we note that ei and hj may be chosen to be real
functions in two-dimensional structures. By rearranging,
we may write any of the four error functions �a;b as
follows

1

N2

X
ijpq

cicjc�pc�q�ijpq �
2

N

X
ij

cic�j�ij 	 P (2)

where P is the integral over space of Ime squared, �ijpq �R
ei�r�ej�r�hp�r�hq�r�dA, and �ij �

R
Ime�r�ei�r�hj�r�dA.

The tensors � and � may be contracted significantly by
exploiting the symmetry of the waveguide modes.
Furthermore, the tensor elements are computed once prior
to the optimization of �, leading to a pixel-invariant iter-
ative process.

For the sake of demonstrating a concrete application of
our algorithm, we restrict ourselves for the remainder of
the Letter to circularly symmetric waveguides. The cylin-
drical structure results in three conserved quantities that
characterize the vectorial eigenmodes: the frequency !,
the axial-wave vector (eigenvalue) k, and the angular
momentum m. The components of an eigenfunction
with eigenvalue k has the form Rml�r� cos�m�	��
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exp�i�kz�!t��. The phase �, which we henceforth call
the degeneracy phase, is required by the degeneracy of the
sinm� and cosm� solutions of the wave equation. Modes
with m � 0 are nondegenerate TE and TM, while modes
with nonzero m are doubly degenerate hybrid modes
[14,15]. The radial factor, Rml�r�, can be obtained using
the transfer-matrix method [16].

We confirmed the validity of this algorithm by applying
it to the problem of mode decomposition in a multimode
cylindrical photonic-band gap fiber [16,17]. The fiber
[Fig. 2(a)] has a 533 !m-diameter hollow core surrounded
by a multilayer structure that results in a fundamental band
gap ranging from 9.5 to 11:2 !m. Since the core diameter
is approximately 50 wavelengths, the fiber is highly multi-
moded and can in theory support about 2000 guided
modes. In practice, however, the strong mode-filtering
mechanism characteristic of this fiber [18], as well as the
input coupling, result in only a few low-loss, low-energy
modes remaining with considerable power after 1 m of
fiber. We used a linearly polarized CO2 laser at 10:6 !m to
excite the fiber, and carried out three sets of measurements
that we refer to as the long-fiber, bent-fiber, and short-fiber
cases. In the long-fiber case, we carried out measurements
for a 1.5 m long straight fiber; in the bent-fiber case, the
first 1.1 m of the same fiber was kept straight while the rest
is bent (radius of curvature Rb � 0:3 m, length d �
0:4 m); and in the short-fiber case, the bent part was cut
off, leaving a 1.1 m long straight fiber. In each case we
captured the near-field and far-field intensity images (using
4� f and 2� f lens configurations, respectively) of two
orthogonal polarizations with a Spiricon pyroelectric cam-
era preceded with a linear polarizer.

We performed the decompositions using a basis consist-
ing of the 16 lowest-energy modes with angular momen-
tum m< 4. We checked convergence by increasing the
number of eigenfunctions in the chosen basis to incorpo-
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rate higher-order modes and found no measurable im-
provement. The fidelity of the decomposition results to
the measured intensity distributions is demonstrated in
Fig. 3, for the short-fiber case. To further confirm the
validity of this decomposition, all measurements were
repeated for five distinct pairs of orthogonal polarization
directions, and the correlation coefficients between the
decomposition results exceeded 0.98. To verify conver-
gence of the error function to its global minimum, we
repeated the process for 50 different random initial con-
ditions, and the correlation between the results was greater
then 0.999.

Numerous salient features of wave propagation in the
fiber may be discerned from the decomposition results of
the three cases by virtue of unveiling the values for the
amplitudes jcnj, relative phases  n, and degeneracy phases
�n of the guided modes. We note that phase values are not
reliable for modes with negligible amplitudes. We start by
examining the short-fiber case [Fig. 4(a)], in which HE11 is
the dominant mode [due to the strong overlap between the
laser Gaussian-beam profile and the HE11 profile as shown
in Fig. 2(c)], with contributions from other modes, most
significantly TE01 and HE21. The polarization of the output
field was found to conserve the horizontal (x) polarization
of the input field, as expected by the circular symmetric
structure. Inspection of the values of jcnj,  n, and �n for
the three above mentioned dominant modes confirms this
experimental observation. This can be shown by first not-
ing that in a large-core fiber the degeneracy phase �n of
any mode manifests itself as a rotation of the mode field
lines by an angle �n. In the case of HE11, �HE11

’ &=2
[upper panel of Fig. 4(a)], corresponding to a rotation of
the field lines [Fig. 2(c)] to the horizontal. The TE01 and
HE21 modes [Figs. 2(b) and 2(d)], on the other hand, have
y-polarized components, but it is straightforward to show
that the relative amplitude, phase, and degeneracy phase
revealed by the decomposition ensure their cancellation.

In a straight fiber, the orthogonal modes propagate with
no mutual interaction, thus, any changes in the modal
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FIG. 3 (color). Measured and reconstructed intensity distribu-
tions for the short-fiber case. The circle in the near-field images
represents the location of the fiber core-cladding interface. The
two circles in the far-field images represent the location of the
first and second zeros of a far-field image of a uniformly
distributed field having the shape and extent of the fiber core.
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distribution along its length are due to losses and disper-
sion. The amplitude of a mode in the output of the long
fiber is related to that of the same mode in the short fiber by
a factor of e�ikn�(n�d. Moreover, in the absence of structural
perturbations we expect the degeneracy phases�n to retain
their values. We theoretically calculated the axial-wave
vectors kn and loss coefficients (n for our structure using
the leaky-mode technique [19]. Figure 4(b) depicts a com-
parison between two modal decompositions for the long
fiber for modes with jcj2 > 0:05. The first is obtained
directly from measurements performed on the long fiber,
while the second uses the experimentally determined de-
composition of the short fiber as initial condition for nu-
merically evaluating the decomposition of the long fiber.
The good agreement between the two cases is easily ob-
served, and the correlation for both the amplitudes and
degeneracy phases was found to be greater then 0.95. We
attribute the small variations in the results to deviation of
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FIG. 4 (color). (a) Complete modal decomposition of the 16
lowest-energy modes, with angular momentum m � 4 for the
short-fiber case. The lower, middle, and upper panels depict the
expansion coefficients modulus squared jcnj2 (normalized such
that

P
jcnj

2 � 1), the relative phases  n, and the degeneracy
phases �n, respectively. (b) The decomposition results of the
long fiber (red bars) and a theoretical estimation (black bars).
(c) The decomposition results of the bent fiber (red bars) and the
calculated results based on a mode-coupling model (black bars).
Both theoretical estimates shown in (b) and (c) use the results in
(a) as initial conditions.
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the fiber structure [17] from the ideal cylindrical structure
assumed by our theoretical model. While the amplitudes
and degeneracy phases are quite insensitive to such struc-
tural deviations, accurate theoretical determination of the
rapidly varying phases  n require precise knowledge of
both the wave vectors kn and the absolute fiber length. A
detailed experimental study on relative-phase reconstruc-
tion will be presented elsewhere.

The rapid convergence of our scheme and complete
phase and amplitude information allows for the study of
systems with a large number of interacting modes as is the
case in a waveguide bend. Here we compare the modal
content in a bent fiber obtained by direct experimental
observation and subsequent modal decomposition at the
fiber output to the predicted output based on coupled-
mode theory assuming identical initial conditions estab-
lished by the modal decomposition of a short fiber.
Theoretically, bends with unchanged cross section and
radius Rb much larger then the core radius, are treated as
a perturbation to the fiber axis [18]. The field at the output
of the bent fiber can then be represented by a linear
superposition of the unperturbed fiber eigenmodes, with
the coefficients satisfying

dcn
dz

� ikncn 	 i
X
n0�n

*nn0cn0 ; (3)

where the matrix elements *nn0 representing the coupling
between the n and n0 modes and couples directly only those
pairs of modes with �m � �1 [20], due to the nature of
the perturbation. The degeneracy of modes with m> 0 is
lifted under this perturbation, giving rise to a change in the
degeneracy phases. Furthermore, the first nonzero correc-
tion to the coefficients in perturbation theory is inversely
proportional to �knn0 � kn � kn0 , thus we expect only
those modes that are close in k space to be strongly
coupled. Evaluation of kn for the various modes identifies
TM01, TE01, and HE21 as the closest neighbors of HE11.
However, since the fiber bend was in the x� z plane,
reflection symmetry around the y axis must be conserved.
Consequently, the x-polarized HE11 will not couple to TE01

due to their different symmetry under reflection in the y
axis (Fig. 2). We solve Eq. (3) numerically for the modes
shown in Fig. 4(c), taking the decomposition results for the
short-fiber case as initial conditions. Figure 4(c) depicts the
solution of the coupled-mode equations thus obtained
alongside the decomposition results for the bent-fiber
case and good agreement is observed with correlation
coefficients for both amplitudes and degeneracy phases
greater then 0.96. The expected coupling to TM01 is clear,
while the ostensibly weaker coupling to HE21 can be
understood from examining the dependence of the solution
of Eq. (3) on the length of the bend. The modes exchange
power back and forth along the bend due to interference of
the scattered waves, and the length of the bend in our
experiment fortuitously corresponds to a point at which
the HE21 coefficient returns to its initial value. Lastly we
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note that if the polarization of the field lies in the plane
of the fiber bend, the mode-coupling results in a field
that conserves the original polarization, otherwise energy
is transferred to the orthogonal polarization. For that rea-
son the HE11 mode retains its polarization along x, as
indicated by �HE11

(upper panel of Fig. 4(c)]. On the other
hand, the degeneracy phase for the HE21 mode, which
has both x-polarization and y-polarization components
[see Fig. 2(d)] changes in order to maintain the overall
x polarization while accommodating changes in the ampli-
tudes of the other modes. The modal content as obtained by
the two independent approaches is in close agreement as
evident in Fig. 4(c).

In conclusion, we have presented an approach to per-
form complete modal decomposition for fields in optical
waveguides. This noninterferometric approach is a modi-
fied phase-retrieval algorithm that makes use of the con-
straints placed on the field by the waveguide. This
approach is applicable to any waveguide geometry and
needs only knowledge of its eigenmodes. We demonstrated
this technique by applying it to the optical field in a hollow-
core photonic-band gap fiber and presented excellent
agreement between the measured results and theoretical
models.
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